Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Acta Pharm Sin B ; 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2326756

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technology for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.

2.
J Control Release ; 358: 128-141, 2023 06.
Article in English | MEDLINE | ID: covidwho-2303394

ABSTRACT

Neutralising monoclonal antibody (mAb) is an important weapon in our arsenal for combating respiratory viral infections. However, the effectiveness of neutralising mAb has been impeded by the rapid emergence of mutant variants. Early administration of broad-spectrum mAb with improved delivery efficiency can potentially enhance efficacy and patient outcomes. WKS13 is a humanised mAb which was previously demonstrated to exhibit broad-spectrum activity against SARS-CoV-2 variants. In this study, a dual targeting formulation strategy was designed to deliver WKS13 to both the nasal cavity and lower airways, the two critical sites of infection caused by SARS-CoV-2. Dry powders of WKS13 were first prepared by spray drying, with cyclodextrin used as stabiliser excipient. Two-fluid nozzle (TFN) was used to produce particles below 5 µm for lung deposition (C-TFN formulation) and ultrasonic nozzle (USN) was used to produce particles above 10 µm for nasal deposition (C-USN formulation). Gel electrophoresis and size exclusion chromatography studies showed that the structural integrity of mAb was successfully preserved with no sign of aggregation after spray drying. To achieve dual targeting property, C-TFN and C-USN were mixed at various ratios. The aerosolisation property of the mixed formulations dispersed from a nasal powder device was examined using a Next Generation Impactor (NGI) coupled with a glass expansion chamber. When the ratio of C-TFN in the mixed formulation increased, the fraction of particles deposited in the lung increased proportionally while the fraction of particles deposited in the nasal cavity decreased correspondingly. A customisable aerosol deposition profile could therefore be achieved by manipulating the mixing ratio between C-TFN and C-USN. Dual administration of C-TFN and C-USN powders to the lung and nasal cavity of hamsters, respectively, was effective in offering prophylactic protection against SARS-CoV-2 Delta variant. Viral loads in both the lung tissues and nasal wash were significantly reduced, and the efficacy was comparable to systemic administration of unformulated WKS13. Overall, dual targeting powder formulation of neutralising mAb is a promising approach for prophylaxis of respiratory viral infections. The ease and non-invasive administration of dual targeting nasal powder may facilitate the widespread distribution of neutralising mAb during the early stage of unpredictable outbreaks.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Powders , SARS-CoV-2 , Respiratory Aerosols and Droplets , Administration, Inhalation , Particle Size , Dry Powder Inhalers
3.
Trends Pharmacol Sci ; 44(2): 85-97, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165902

ABSTRACT

Monoclonal antibodies represent an exciting class of therapeutics against respiratory viral infections. Notwithstanding their specificity and affinity, the conventional parenteral administration is suboptimal in delivering antibodies for neutralizing activity in the airways due to the poor distribution of macromolecules to the respiratory tract. Inhaled therapy is a promising approach to overcome this hurdle in a noninvasive manner, while advances in antibody engineering have led to the development of unique antibody formats which exhibit properties desirable for inhalation. In this Opinion, we examine the major challenges surrounding the development of inhaled antibodies, identify knowledge gaps that need to be addressed and provide strategies from a drug delivery perspective to enhance the efficacy and safety of neutralizing antibodies against respiratory viral infections.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , SARS-CoV-2 , Antibodies, Viral/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use
4.
Front Immunol ; 13: 995235, 2022.
Article in English | MEDLINE | ID: covidwho-2043451

ABSTRACT

Current coronavirus disease-19 (COVID-19) vaccines are administered by the intramuscular route, but this vaccine administration failed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection in the upper respiratory tract, mainly due to the absence of virus-specific mucosal immune responses. It is hypothesized that intranasal (IN) vaccination could induce both mucosal and systemic immune responses that blocked SARS-CoV-2 transmission and COVID-19 progression. Here, we evaluated in mice IN administration of three modified vaccinia virus Ankara (MVA)-based vaccine candidates expressing the SARS-CoV-2 spike (S) protein, either the full-length native S or a prefusion-stabilized [S(3P)] protein; SARS-CoV-2-specific immune responses and efficacy were determined after a single IN vaccine application. Results showed that in C57BL/6 mice, MVA-based vaccine candidates elicited S-specific IgG and IgA antibodies in serum and bronchoalveolar lavages, respectively, and neutralizing antibodies against parental and SARS-CoV-2 variants of concern (VoC), with MVA-S(3P) being the most immunogenic vaccine candidate. IN vaccine administration also induced polyfunctional S-specific Th1-skewed CD4+ and cytotoxic CD8+ T-cell immune responses locally (in lungs and bronchoalveolar lymph nodes) or systemically (in spleen). Remarkably, a single IN vaccine dose protected susceptible K18-hACE2 transgenic mice from morbidity and mortality caused by SARS-CoV-2 infection, with MVA-S(3P) being the most effective candidate. Infectious SARS-CoV-2 viruses were undetectable in lungs and nasal washes, correlating with high titers of S-specific IgGs and neutralizing antibodies against parental SARS-CoV-2 and several VoC. Moreover, low histopathological lung lesions and low levels of pro-inflammatory cytokines in lungs and nasal washes were detected in vaccinated animals. These results demonstrated that a single IN inoculation of our MVA-based vaccine candidates induced potent immune responses, either locally or systemically, and protected animal models from COVID-19. These results also identified an effective vaccine administration route to induce mucosal immunity that should prevent SARS-CoV-2 host-to-host transmission.


Subject(s)
COVID-19 , Viral Vaccines , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Cytokines , Immunoglobulin A , Immunoglobulin G , Mice , Mice, Inbred C57BL , SARS-CoV-2 , Vaccinia virus/genetics
5.
Pharm Res ; 39(3): 541-551, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1777764

ABSTRACT

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity. METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 µg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects. RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 h, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 h. CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 h after dosing.


Subject(s)
COVID-19 , Heparin , Animals , Anticoagulants/adverse effects , Humans , Mice , Mice, Inbred C57BL , Partial Thromboplastin Time
6.
Int J Pharm ; 619: 121704, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1763774

ABSTRACT

Unpredictable outbreaks due to respiratory viral infections emphasize the need for new drug delivery strategies to the entire respiratory tract. As viral attack is not limited to a specific anatomic region, antiviral therapy that targets both the upper and lower respiratory tract would be most effective. This study aimed to formulate tamibarotene, a retinoid derivative previously reported to display broad-spectrum antiviral activity against influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), as a novel dual particle size powder formulation that targets both the nasal cavity and the lung by a single route of intranasal administration. Spray freeze drying (SFD) and spray drying (SD) techniques were employed to prepare tamibarotene powder formulations, and cyclodextrin was used as the sole excipient to enhance drug solubility. With the employment of appropriate atomizing nozzles, particles of size above 10 µm and below 5 µm could be produced for nasal and lung deposition, respectively. The aerosol performance of the powder was evaluated using Next Generation Impactor (NGI) coupled with a glass expansion chamber and the powder was dispersed with a nasal powder device. By blending powder of two different particle sizes, a single powder formulation with dual aerosol deposition characteristic in both the nasal and pulmonary regions was produced. The aerosol deposition fractions in the nasal cavity and pulmonary region could be modulated by varying the powder mixing ratio. All dry powder formulations exhibited spherical structures, amorphous characteristics and improved dissolution profile as compared to the unformulated tamibarotene. Overall, a novel dual targeting powder formulation of tamibarotene exhibiting customizable aerosol deposition profile was developed. This exceptional formulation strategy can be adopted to deliver other antimicrobial agents to the upper and lower airways for the prevention and treatment of human respiratory infections.


Subject(s)
COVID-19 Drug Treatment , Dry Powder Inhalers , Administration, Inhalation , Administration, Intranasal , Aerosols , Antiviral Agents , Humans , Lung , Particle Size , Powders , SARS-CoV-2
7.
Applied Materials Today ; 26:101303, 2022.
Article in English | ScienceDirect | ID: covidwho-1588305

ABSTRACT

Alzheimer's disease (AD) is the fifth leading cause of death on the planet. It hallmarks the presence of amyloid plaques and neurofibrillary tangles in geriatric patients. The condition witnesses early stages of mild dementia and learning inabilities. It progressively culminates into impaired behavioural functions, cognitive inability and impaired memory functions. Also, the COVID-19 pandemic has raised new concerns for AD patients as they are at higher risk of infection with COVID-19 than non-AD patients. The increasing toll of Alzheimer's patients is alarming a need for effective and safe therapeutics. This review discusses the various nanocarriers in delivering therapeutics for Alzheimer's via the intranasal route. Nanocarrier based therapeutic, diagnostic and theragnostic applications concerning AD have been covered. The review also discusses the nasal transport pathways and nanocarrier characteristics' role in cellular uptake mechanism. We have briefly discussed the potential biomarkers, imaging modalities, nano vaccines, advanced theragnostic probes, and related clinical studies. Lastly, we discussed the prospects concerning the development of intranasal nanodiagnostics and nanotherapeutics in Alzheimer's. Overall, this review summarizes various intranasal brain targeting strategies in AD.

8.
ACS Nano ; 15(11): 17582-17601, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1493016

ABSTRACT

The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2 (SC2). A variety of anti-SC2 vaccines have been approved for human applications, including those using messenger RNA (mRNA), adenoviruses expressing SC2 spike (S) protein, and inactivated virus. The protective periods of immunization afforded by these intramuscularly administered vaccines are currently unknown. An alternative self-administrable vaccine capable of mounting long-lasting immunity via sterilizing neutralizing antibodies would be hugely advantageous in tackling emerging mutant SC2 variants. This could also diminish the possibility of vaccinated individuals acting as passive carriers of COVID-19. Here, we investigate the potential of an intranasal (IN)-delivered DNA vaccine encoding the S protein of SC2 in BALB/c and C57BL/6J immunocompetent mouse models. The immune response to IN delivery of this SC2-spike DNA vaccine transported on a modified gold-chitosan nanocarrier shows a strong and consistent surge in antibodies (IgG, IgA, and IgM) and effective neutralization of pseudoviruses expressing S proteins of different SC2 variants (Wuhan, beta, and D614G). Immunophenotyping and histological analyses reveal chronological events involved in the recognition of SC2 S antigen by resident dendritic cells and alveolar macrophages, which prime the draining lymph nodes and spleen for peak SC2-specific cellular and humoral immune responses. The attainable high levels of anti-SC2 IgA in lung mucosa and tissue-resident memory T cells can efficiently inhibit SC2 and its variants at the site of entry and also provide long-lasting immunity.


Subject(s)
COVID-19 , Chitosan , Vaccines, DNA , Viral Vaccines , Mice , Animals , Humans , COVID-19 Vaccines , Pandemics , SARS-CoV-2 , Antibodies, Viral , Gold , COVID-19/prevention & control , Mice, Inbred C57BL , Antibodies, Neutralizing , Immunization , Mice, Inbred BALB C , Immunoglobulin A
9.
Pharmaceutics ; 13(10)2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-1444295

ABSTRACT

Despite the progress made in the fight against the COVID-19 pandemic, it still poses dramatic challenges for scientists around the world. Various approaches are applied, including repurposed medications and alternative routes for administration. Several vaccines have been approved, and many more are under clinical and preclinical investigation. This review aims to systemize the available information and to outline the key therapeutic strategies for COVID-19, based on the nasal route of administration.

10.
Antib Ther ; 4(3): 171-174, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1405002
11.
Future Drug Discov ; 2(4): FDD50, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-955248
12.
Arch Med Res ; 52(2): 143-150, 2021 02.
Article in English | MEDLINE | ID: covidwho-893599

ABSTRACT

The Chinese outbreak of SARS-CoV-2 during 2019 has become pandemic and the most important concerns are the acute respiratory distress syndrome (ARDS) and hyperinflammation developed by the population at risk (elderly and/or having obesity, diabetes, and hypertension) in whom clinical evolution quickly progresses to multi-organ dysfunction and fatal outcome. Immune dysregulation is linked to uncontrolled proinflammatory response characterized by the release of cytokines (cytokines storm). A proper control of this response is mandatory to improve clinical prognosis. In this context, glucocorticoids are able to change the expression of several genes involved in the inflammatory response leading to an improvement in acute respiratory distress. Although there are contradictory data in the literature, in this report we highlight the potential benefits of glucocorticoids as adjuvant therapy for hyperinflammation control; emphasizing that adequate dosage, timing, and delivery are crucial to reduce the dysregulated peripheral-and neuro-inflammatory response with minimal adverse effects. We propose the use of the intranasal route for glucocorticoid administration, which has been shown to effectively control the neuro-and peripheral-inflammatory response using low doses without generating unwanted side effects.


Subject(s)
COVID-19 Drug Treatment , Glucocorticoids/therapeutic use , Animals , Cytokines/immunology , Humans , Respiratory Distress Syndrome , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL